MOMBRES COMPLEXES

I Forme algébrique

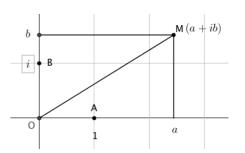
1. Les points du plan et les nombres complexes.

Le plan est muni d'un repère orthonormal $(O; \vec{u}; \vec{v})$ est appelé plan complexe ou plan d'Argand-Cauchy.

Au point A(1; 0) on associe le nombre 1, au point B(0; 1) on associe le nombre i tel que $i^2 = -1$.

À tout point M(a; b) on associe son affixe z = a + ib. Réciproquement M est l'image de z.

Remarque : i est un nombre comme les autres... Il faudra s'habituer à le considérer comme $\sqrt{2}$ ou π .



Théorème : Soit \mathbb{C} l'ensemble des nombres de la forme z = a + ib, où a et b sont des réels quelconque, et i vérifie $i^2 = -1$.

Alors:

- \mathbb{C} existe, et *i* aussi. Les nombres de \mathbb{C} sont appelés nombres complexes
- L'écriture z = a + ib est unique. Elle est appelée forme algébrique de z.
- On peut munir $\mathbb C$ d'une addition et d'une multiplication qui prolongent celles de $\mathbb R$.

Conséquence: deux complexes z = a + ib et z = a' + ib' sont égaux si et seulement si a = a' et b = b'.

Exercice : dans le repère ci-contre, placer les points d'affixe donnés :

$$M(3+2i)$$

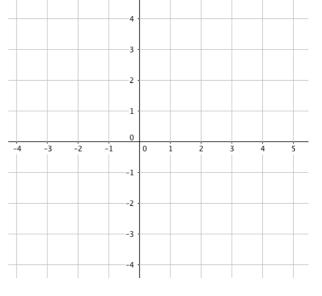
$$N(-2+i)$$

$$P(-4i)$$

$$R(4-3i) S\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$$

Définition: Soit z un nombre complexe, donné sous la forme z = a + ib. On appelle a la partie réelle de z, b la partie imaginaire de z. On note a = Re(z) et b = Im(z).

Remarque: dans la partie imaginaire, il n'y a pas le (i). La partie imaginaire de (i) est donc un nombre réel!



Remarques/définitions complémentaires :

- On note souvent z = x + iy, pour rappeler l'usage des coordonnées. Il n'y a pas de préférence pour une notation ou l'autre.
- Un complexe z = a + ib est réel si et seulement si b = 0; c'est à dire que z = a.
- Un complexe z = a + ib est imaginaire pur si et seulement si a = 0; c'est à dire que z = ib.
- L'affixe d'un vecteur $\overrightarrow{OM} = \vec{u}$ est l'affixe du point M.

Que changent les complexes par rapport aux réels ?

• On gagne le fait qu'une équation de degré n ait toujours n solutions (certaines pouvant être présentes plusieurs fois). Plus précisément, on dit qu'un polynôme de degré n a toujours n

racines dans \mathbb{C} . La démonstration dépasse amplement le niveau de terminale, on se contentera du second degré.

• On perd l'ordre. Pour rappel, deux nombres réels peuvent toujours être ordonnés (il y a le plus grand et le plus petit). Pour montrer que l'ordre dans $\mathbb C$ n'existe pas, il suffit de trouver deux éléments non ordonnables. On va montrer que le nombre i, qui n'est pas nul, n'est ni positif ni négatif, c'est à dire qu'on n'a pas i > 0 ou i < 0.

Démonstration par l'absurde :

Pour démontrer une propriété par l'absurde, on suppose que son contraire est vrai, et on montre qu'on arrive à une contradiction. On suppose donc qu'on a i > 0 ou i < 0.

- Supposons que i > 0Alors $i > 0 \Rightarrow i^2 > 0^2 \Rightarrow -1 > 0$ car $i^2 = -1$ Or -1 > 0 est problématique...donc i n'est pas positif
- Puisque i n'est pas positif, alors i < 0 d'après notre hypothèse. Alors $i < 0 \Rightarrow i^2 > 0^2 \Rightarrow -1 > 0$ (on inverse l'ordre pour le passage au carré des négatifs). Absurde.
- L'hypothèse « i > 0 ou i < 0 » emmène donc à une contradiction, on en déduit que i et 0 ne sont pas ordonnables.

2. Opérations

a/ Point de vue algébrique

→ regarder le film « Dimensions chapitre 5 » à l'adresse suivante : https://www.youtube.com/watch?v=BosTQT4smJA (ou googler dimension chapitre 5 français). Vous pouvez sauter le début et commencer à 1mn30. Finir à 9mn39 (pour ce qui concerne ce paragraphe), ou bien à 11mn45 (paragraphe « forme trigonométrique » ci-après. La suite, qui ne concerne pas le programme de terminale, est très surprenante, elle est plus facile à comprendre si vous suivez le documentaire dans l'ordre (en commençant par le chapitre 1 ... ②).

Même si le rythme vous paraît lent, le raisonnement exposé est fin.

- Notamment bien comprendre pourquoi, avec un raisonnement géométrique et non calculatoire, le narrateur dit « il n'y a donc aucun nombre qui, multiplié par lui-même, donne -1 » (3 mn 59).
- Point important à 7mn17 (multiplication par i)

Toutes les règles de calcul dans $\mathbb R$ sont valables dans $\mathbb C$.

En particulier : somme et produit, identités remarquables, règle du produit nul.

Exemple : disposition rapide du calcul pour le produit

Pour limiter les erreurs de calcul pendant la distribution lors d'une multiplication, il est plus efficace de changer ses habitudes comme suit :

$$(3+2i)(-5+4i) = \underbrace{3\times -5 + 2i\times 4i}_{\text{partie réelle}} + i\underbrace{(3\times 4 + 2\times -5)}_{\text{partie imaginaire}} = -23 + 2i$$

On a d'abord calculé tout ce qui donne un résultat réel (flèches rouges du dessus). On peut même dans un second temps ne plus du tout écrire les « i », sachant qu'on a un $i^2 = -1$. Puis on met un « i » en facteur, et on calcule la partie imaginaire (flèches bleues du dessous).

Inverse: Pour $z \ne 0$ on a $\frac{1}{z} = \frac{a - ib}{a^2 + b^2}$ (ne pas retenir, on verra plus loin une forme plus compacte)

Exemple : calcul d'un inverse sous forme algébrique.

$$\frac{1}{3-4i} = \frac{1}{3-4i} \times \frac{3+4i}{3+4i} = \frac{3+4i}{3^2+4^2} = \frac{3+4i}{25}$$

Dans le calcul précédent, constater que :

- Pour supprimer les « i » au dénominateur, on a multiplié par une fraction égale à 1, où dénominateur et numérateur sont deux complexes égaux. Ce complexe a la même partie réelle que le dénominateur d'origine, pour la partie imaginaire le signe est inversé. Ce nombre est appelé conjugué (cf. ci-dessous)
- On a appliqué l'identité remarquable $(a+b)(a-b) = a^2 b^2$. Ici on a $(3-4i)(3+4i) = 3^2 (4i)^2 = 3^2 4^2i^2 = 3^2 + 4^2$ car $i^2 = -1$.
- On peut retenir une nouvelle identité remarquable $(a+ib)(a-ib) = a^2 + b^2$
- On obtient bien la forme algébrique du nombre : $\frac{1}{3-4i} = \frac{3+4i}{25} = \frac{3}{25} + i\frac{4}{25} = a+ib$

À faire en suivant la même méthode : $\frac{1-i}{1+i}$ =

Remarque pour la culture mathématique :

- l'addition dans \mathbb{C} est commutative z+z'=z'+z, associative z+(z'+z'')=(z+z')+z'', admet un élément neutre 0 z+0=0+z=z, et tout élément admet un opposé : on dit que $(\mathbb{C},+)$ est un groupe commutatif.
- De même, la multiplication dans $\mathbb{C}_* = \mathbb{C} \setminus \{0\}$ est commutative, associative, admet un élément neutre 1, et tout élément admet un opposé (appelé inverse dans le cas du produit) : on dit que (\mathbb{C}_*,\times) est un groupe commutatif. Remarquez que la division n'est pas associative.
- De plus le produit est distributif par rapport à l'addition : $(\mathbb{C},+,\times)$ est un corps commutatif.

b/ Interprétation géométrique

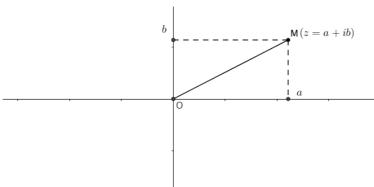
Soient \vec{u} et \vec{v} deux vecteurs d'affixes respectives $z_{\vec{u}}$ et $z_{\vec{v}}$, et A, B et I trois points d'affixes respectives z_A , z_B et z_C . On a alors :

- L'affixe du vecteur $\vec{u} + \vec{v}$: $z_{\vec{u}+\vec{v}} = z_{\vec{u}} + z_{\vec{v}}$
- L'affixe du vecteur \overrightarrow{AB} : $z_{\overline{AB}} = z_{B} z_{A}$ $\left(= z_{\overline{AO}} + z_{\overline{OB}} \right)$
- L'affixe de I milieu de [AB] : $z_I = \frac{z_A + z_B}{2}$

3. Conjugué d'un nombre complexe.

 $\overline{D\acute{e}finition}$: le conjugué du complexe z = a + ib est le complexe $\overline{z} = a - ib$.

Symétries: Compléter le schéma ci-dessous, avec les points $M_1(\overline{z})$, $M_2(-z)$ et $M_3(-\overline{z})$.



Propriétés: la conjugaison est compatible avec les opérations usuelles (on dit que c'est un morphisme de corps...). Pour tous complexes z et z', et pour tout entier naturel n on a :

 $\overline{z+z'} = \overline{z} + \overline{z'}$

 $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'} \qquad \overline{z}^n = \overline{z}^n \qquad \left(\frac{z}{z'}\right) = \frac{\overline{z}}{\overline{z'}} \qquad \left(\frac{1}{z'}\right) = \frac{1}{\overline{z'}} \qquad \overline{-z} = -\overline{z}$

Idempotence : $\overline{\overline{z}} = z$

Démonstrations:

- Évident (mais à vérifier quand même) pour l'idempotence À faire avec la forme algébrique pour :
- $\bullet \qquad \overline{z+z'} = \overline{z} + \overline{z'}$

- $\bullet \qquad \overline{\left(\frac{1}{z'}\right)} = \frac{1}{\overline{z'}}$
- Démontrons $\left(\frac{z}{z'}\right) = \frac{\overline{z}}{\overline{z}'} : \left(\frac{z}{z'}\right) = \left(z \times \frac{1}{z'}\right)^{(1)} = \overline{z} \times \left(\frac{1}{z'}\right)^{(2)} = \overline{z} \times \frac{1}{\overline{z}'} = \frac{\overline{z}}{\overline{z}'}$

On a utilisé pour (1): $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$ et pour (2): $\left(\frac{1}{z'}\right) = \frac{1}{\overline{z'}}$; le principe étant d'utiliser au maximum les preuves précédentes, pour faire un minimum de calculs.

- Démontrons par récurrence que $\overline{z^n} = \overline{z}^n$
 - O Initialisation: pour n = 0 on a $\overline{z^0} = \overline{1^0} = \overline{1} = 1 = (\overline{z})^0$
 - Hérédité : supposons que pour un entier naturel n fixé, on a $\overline{z^n} = \overline{z}^n$
 - o (hypothèse de récurrence). Montrons alors que $\overline{z^{n+1}} = \overline{z}^{n+1}$.

$$\overline{z^{n+1}} = \overline{z^n \times z}$$

$$= \overline{z^n} \times \overline{z} \quad \text{d'après} \quad \overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$$

$$= \overline{z}^n \times \overline{z} \quad \text{d'après l'hypothèse de récurrence} \quad \overline{z^n} = \overline{z}^n$$

$$= \overline{z}^{n+1} \quad CQFD$$

La propriété est vraie au rang n+1

o Conclusion : la propriété étant initialisée et héréditaire, on a montré d'après l'axiome de récurrence que $\forall n \in \mathbb{N}$ $\overline{z^n} = \overline{z}^n$

Méthodes / propriétés :

- $z \text{ r\'eel} \Leftrightarrow b = 0 \Leftrightarrow z = \overline{z}$
- z imaginaire pur $\Leftrightarrow a = 0 \Leftrightarrow z = -\overline{z}$

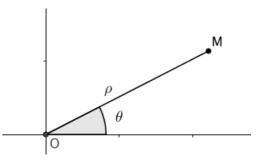
Démonstration (à faire proprement pour l'une des deux, plus rapidement pour l'autre):

II Forme trigonométrique

Si vous ne l'avez pas encore fait, regardez Dimensions 5 de 9mn39 à 11mn45.

1. Module et argument

Plutôt que de repérer un point M dans le plan avec les deux coordonnées x et y, on peut utiliser la distance OM notée r ou ρ , et une mesure de l'angle $(\vec{u}; \overrightarrow{OM})$, notée θ , (qui n'existe que pour $M \neq O$).



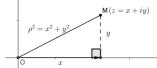
Définition : soit $z \neq 0$ un complexe, M le point d'affixe z.

La longueur $OM = r = \rho$ est appelée module de z, et est notée |z|. D'où : $|z| = r = \rho$

Une mesure de l'angle $(\vec{u}; \overrightarrow{OM}) = \theta$ est appelée *un* argument de z, noté arg z (on rappelle qu'un angle admet une infinité de mesures).

On écrit $\arg z = \theta + 2k\pi$, $k \in \mathbb{Z}$ ou $\arg z \equiv \theta[2\pi]$ (se lit « un argument de z est congru à θ modulo 2π »)

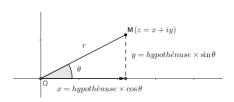
Liens entre forme algébrique et forme trigonométrique : Pour tout nombre complexe z non nul on a :



$$r = \rho = |z| = \sqrt{x^2 + y^2}$$
; $\cos \theta = \frac{x}{r}$; $\sin \theta = \frac{y}{r}$

$$x = r\cos\theta \qquad y = r\sin\theta$$

D'où: $z = x + iy = r(\cos\theta + i\sin\theta)$

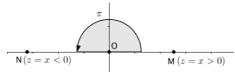


Propriétés immédiates :

• Si $z = x \in \mathbb{R}$, alors la notation est cohérente : module de z = |z| = |x| = valeur absolue de x

De plus si
$$x > 0$$
 arg $x = 0 + 2k\pi$, $k \in \mathbb{Z}$

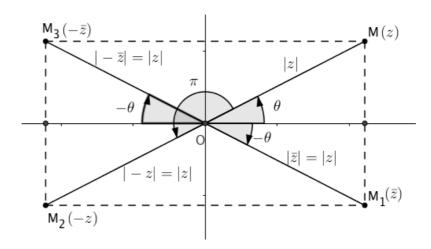
Si
$$x < 0$$
 arg $x = \pi + 2k\pi$, $k \in \mathbb{Z}$



•
$$|\overline{z}| = |z|$$
 et $\arg \overline{z} = -\arg z[2\pi]$

•
$$|-z| = |z|$$
 et $\arg(-z) \equiv \pi + \arg z[2\pi]$

Le schéma suivant est important, il résume les propriétés précédentes ; il permet aussi de voir ce qui se passe pour $-\overline{z}$.



• On peut retenir la formule suivante pour le calcul de l'inverse d'un complexe, mais ce n'est pas obligatoire : $\frac{1}{z} = \frac{\overline{z}}{|z|^2} \left(= \frac{a - ib}{a^2 + b^2} \right)$

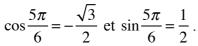
2. Forme trigonométrique

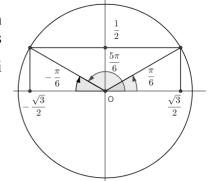
Définition : pour $z \neq 0$, l'écriture $z = r(\cos\theta + i\sin\theta)$ est appelée forme trigonométrique de z, où r = |z| et θ est un argument de z.

Rappel: vous connaissez bien sûr par cœur les lignes trigonométriques usuelles (et ce depuis la seconde ⊕)

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Vous vous rappelez également comment trouver, à partir d'un schéma, du tableau ci-dessus, et des propriétés de symétries, les lignes trigonométriques de, par exemple, $\frac{5\pi}{6}$. On trouve ici





Exemples : donner la forme trigonométrique de :

- 2 -5
- 2i
- -i
- 1 + i
- -1 + i
- 2 + i

3. Opérations

Lemme : la démonstration est à comprendre, c'est une ROC. Par contre, le résultat est présenté de manière plus simple dans le théorème principal.

Soient z et z' deux complexes non nuls, avec $z = r(\cos\theta + i\sin\theta)$ et $z' = r'(\cos\theta' + i\sin\theta')$

$$zz' = rr'(\cos(\theta + \theta') + i\sin(\theta + \theta'))$$

$$\frac{z}{z'} = \frac{r}{r'} \left(\cos(\theta - \theta') + i \sin(\theta - \theta') \right)$$

Démonstrations :

• $zz' = r(\cos\theta + i\sin\theta) \times r'(\cos\theta' + i\sin\theta')$

 $= rr' \Big[\cos\theta\cos\theta' - \sin\theta\sin\theta' + i(\cos\theta\sin\theta' + \cos\theta'\sin\theta)\Big]$ on distribue comme vu en I-2-a (opérations : point de vue algébrique), en calculant d'abord la partie réelle, où l'on tient compte de $i^2 = -1$. Puis on met « i » en facteur et on calcule la partie imaginaire.

On utilise ensuite les formules sur le cosinus et le sinus d'une somme :

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$ et $\sin(a+b) = \sin a \cos b + \cos a \sin b$.

On obtient bien : $zz' = rr'(\cos(\theta + \theta') + i\sin(\theta + \theta'))$

Remarque : on peut retenir les formules trigonométriques sous cette forme :

C+ = CC - SS et S+ = SC + CS

Ce qui permet de trouver C-= CC + SS et S- = SC-CS car $\cos(-a) = \cos a$ et $\sin(-a) = \sin a$.

- Pour le quotient, avec $\frac{1}{z'} = \frac{\overline{z'}}{|z'|^2} = \frac{r'(\cos(-\theta') + i\sin(-\theta'))}{r'^2} = \frac{1}{r'}(\cos(-\theta') + i\sin(-\theta'))$ (1) et $\frac{z}{z'} = z \times \frac{1}{z'}$, on peut appliquer la formule que l'on vient de démontrer sur le produit, en remplaçant r' par $\frac{1}{r'}$ et θ' par $-\theta'$. On en déduit immédiatement $\frac{z}{z'} = \frac{r}{r'}(\cos(\theta \theta') + i\sin(\theta \theta'))$.
- Remarque: pour trouver l'écriture (1) de $\frac{1}{z'}$, on peut utiliser une méthode un peu plus « abstraite »:

 On pose $\theta = -\theta'$ et $r = \frac{1}{r'}$, d'où $zz' = \frac{1}{r'}r'(\cos(-\theta' + \theta') + i\sin(-\theta' + \theta')) = 1(\cos 0 + i\sin 0) = 1$, donc $\frac{1}{z'} = z = \frac{1}{r'}(\cos(-\theta') + i\sin(-\theta'))$. On finit alors la preuve comme ci-dessus.

Corollaire: Soient z et z' deux complexes non nuls.

Module Argument
$$|zz'| = |z||z'|$$
 arg $zz' \equiv \arg z + \arg z' [2\pi]$
$$|\frac{1}{z'}| = \frac{1}{|z'|}$$
 arg $\frac{1}{z'} \equiv -\arg z' [2\pi]$ arg $\frac{1}{z'} \equiv \arg z - \arg z' [2\pi]$
$$|z''| = |z|^n$$
 arg $z'' \equiv \arg z - \arg z' [2\pi]$ arg $z'' \equiv \arg z - \arg z' [2\pi]$

Démonstrations :

- |zz'| = |z||z'| et $\arg zz' \equiv \arg z + \arg z'[2\pi]$ sont la traduction directe de $zz' = rr'(\cos(\theta + \theta') + i\sin(\theta + \theta'))$.
- $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$ et $\arg \frac{z}{z'} = \arg z \arg z' [2\pi]$ sont la traduction directe de $\frac{z}{z'} = \frac{r}{r'} (\cos(\theta \theta') + i\sin(\theta \theta'))$.
- $\left| \frac{1}{z'} \right| = \frac{1}{|z'|}$ et $\arg \frac{1}{z'} = -\arg z' [2\pi]$ sont obtenues à partir des propriétés sur le quotient, en posant dans la ligne précédente z = 1 (d'où |z| = 1 et $\arg z = 0[2\pi]$)
- $|z^n| = |z|^n$ et $\arg z^n \equiv n \times \arg z[2\pi]$ se démontrent par récurrence à partir de la première propriété. Faites au moins une de ces démonstrations proprement, vous pouvez vous baser sur la preuve des puissances du conjugué.

A retenir:

- le module est compatible avec le produit, le quotient et les puissances.
- L'argument transforme le produit en somme, le quotient en différence, la puissance en produit.

Méthodes:
$$z \text{ réel } \Leftrightarrow \arg z = 0[\pi]$$

 $z \text{ imaginaire pur } \Leftrightarrow \arg z = \frac{\pi}{2}[\pi]$

III Applications.

1. Équation du second degré à coefficients réels

Théorème: l'équation du second degré $ax^2 + bx + c = 0$, où a, b et c sont des réels quelconques ($a \ne 0$), admet toujours deux solutions dans \mathbb{C} (éventuellement deux fois la même).

Si $\Delta \ge 0$, les solution sont données par le théorème de première.

Si $\Delta < 0$, les solutions sont les deux nombres complexes conjugués : $z_{1-2} = \frac{-b \pm i\sqrt{\Delta}}{2a}$.

Démonstration rapide : il suffit de reprendre la démonstration de 1ère.

On trouve la forme canonique : $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}$.

Si $\Delta = b^2 - 4ac \ge 0$, on factorise comme en première et on obtient les solutions réelles.

Si
$$\Delta = b^2 - 4ac < 0$$
, alors $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \left(\frac{i\sqrt{-\Delta}}{2a}\right)^2$ (remarquez que $-\Delta > 0$). On

factorise de manière semblable au cas $\Delta \ge 0$, d'où $ax^2 + bx + c = a \left(x + \frac{b + i\sqrt{-\Delta}}{2a} \right) \left(x + \frac{b - i\sqrt{-\Delta}}{2a} \right)$ CQFD.

2. Géométrie

a/ Utilisation du module : problèmes de longueurs

La propriété fondamentale est $AB = |z_B - z_A|$

Exemples:

- Le cercle de centre Ω et de rayon R est l'ensemble des points M(z) tels que $\Omega M = R \Leftrightarrow |z z_{\Omega}| = R$
- La médiatrice du segment [AB] est l'ensemble des points équidistants de A et de B, soit $AM = BM \Leftrightarrow |z z_A| = |z z_B|$
- triangles divers, par exemple le triangle ABC est équilatéral si et seulement si $AB = BC = CA \Leftrightarrow |z_B z_A| = |z_C z_B| = |z_A z_C|$

• parallélogrammes divers...

b/ Utilisation de l'argument : problèmes d'angles

Propriétés fondamentales : $(\vec{u}; \overrightarrow{AB}) \equiv \arg(z_B - z_A)[2\pi]$

$$(\overrightarrow{AB}; \overrightarrow{CD}) \equiv \arg \left(\frac{z_D - z_C}{z_B - z_A}\right) [2\pi]$$
, à savoir démontrer à partir de la précédente.

Exemples:

- (AB) perpendiculaire à (AC) $\Leftrightarrow \frac{c-a}{b-a}$ imaginaire pur
- A, B, C alignés $\Leftrightarrow \frac{c-a}{b-a}$ réel
- A comprendre ultérieurement : on peut mélanger utilisation du module et de l'argument : ABC est équilatéral si et seulement si AB = AC et $(\overrightarrow{AB}; \overrightarrow{AC}) = \pm \frac{\pi}{3} [2\pi]$

$$\Leftrightarrow |z_{B} - z_{A}| = |z_{C} - z_{A}| \text{ et } \arg\left(\frac{z_{C} - z_{A}}{z_{B} - z_{A}}\right) = \pm \frac{\pi}{3} [2\pi]$$

$$\Leftrightarrow \frac{|z_{C} - z_{A}|}{|z_{B} - z_{A}|} = 1 \text{ et } \arg\left(\frac{z_{C} - z_{A}}{z_{B} - z_{A}}\right) = \pm \frac{\pi}{3} [2\pi]$$

$$\Leftrightarrow \frac{z_{C} - z_{A}}{z_{B} - z_{A}} = \cos\left(\pm \frac{\pi}{3}\right) + i \sin\left(\pm \frac{\pi}{3}\right)$$