EXERCICES COMPLEMENTAIRES MATRICES

Exercice 1.

Dans un repère orthonormé direct (O, \vec{i}, \vec{j}) , soit la figure composée :

- du carré OIJK avec $I\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $K\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ et $J\begin{pmatrix} 0 \\ 2 \end{pmatrix}$;
- surmonté du triangle *KJL* avec $L\begin{pmatrix} 1\\3 \end{pmatrix}$.
- Soit la matrice $D = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$.
- 1. Calculer les coordonnées des points O', I', J', K' et L' définis par $O' = D \cdot O$, $I' = D \cdot I$, $J' = D \cdot J$, $K' = D \cdot K$, $L' = D \cdot L$
- 2. Faire une figure.

Remarque: D est une matrice qui représente une transformation, ici une dilatation de vecteur \vec{j} et de rapport 3.

Exercice 2.

Dans un repère orthonormé direct (O, \vec{i}, \vec{j}) , soit la figure composée :

- du carré *OIJK* avec $I\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $K\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ et $J\begin{pmatrix} 0 \\ 2 \end{pmatrix}$;
- surmonté du triangle *KJL* avec $L\begin{pmatrix} 1\\ 3 \end{pmatrix}$.
- Soit la matrice $T = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.
- 1. Calculer les coordonnées des points O', I', J', K' et L' définis par $O' = T \cdot O$, $I' = T \cdot I$, $J' = T \cdot J$, $K' = T \cdot K$, $L' = D \cdot L$
- 2. Faire une figure.

Remarque: T est une matrice qui représente une transformation, ici une transvection de vecteur i et de rapport 2.

Pour info : On appelle transvection du plan une transformation admettant une droite de points invariants et telle que toute droite joignant un point en dehors de cette droite et son image est parallèle à cette droite.

Exercice 3.

Dans les exercices 1 et 2, un point a une image unique par D ou T.

Les matrices des deux exercices précédents sont-elles inversibles ? Que cela signifie-t-il en termes d'image ou d'antécédent ?

Remarque: On dit que ces transformations sont des applications linéaires du plan. Plus généralement, une fonction f d'un ensemble A dans un ensemble B est une :

- surjection lorsque tout élément de B admet au moins un antécédent dans A ;
- injection lorsque tout élément de B admet au plus un antécédent dans A ;
- bijection lorsque f est à la fois une injection et une surjection, c'est-à-dire que tout élément de B admet exactement un antécédent dans A par f.

Exercice 4.

Déterminer la matrice associée à :

• la projection orthogonale sur l'axe des abscisses. Est-ce une application linéaire ?

- la projection orthogonale sur l'axe des ordonnées. Est-ce une application linéaire ?
- la projection sur la première bissectrice Δ . Est-ce une application linéaire ?

Pour ce dernier exercice, on note M(x,y) le point à projeter et M'(x',y') son projeté.

- 1. Faire un schéma et donner une équation de la première bissectrice en fonction de x' et y' (pour des raisons de commodité, puisque le point M' est sur cette droite).
- 2. Soit \vec{u} un vecteur directeur de Δ . Que peut-on dire de \vec{u} et MM'?
- 3. En déduire un système permettant de calculer x' et y' en fonction de x et y, puis la matrice demandée.
- Généraliser à la projection orthogonale sur une droite d'équation ax' + by' = 0.

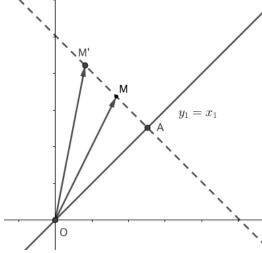
Exercice 5.

On pourra utiliser intelligemment les résultats de l'exercice précédent.

Dans la dilatation d'axe la première bissectrice Δ , d'équation $y_1 = x_1$, et de rapport 2, le point M' image de

M est obtenu par $\overrightarrow{OM'} = \overrightarrow{OA} + 2 \cdot \overrightarrow{AM}$, où A est le projeté orthogonal de M sur Δ .

Donner la matrice de cette dilatation. Est-ce une application affine?



Généraliser à la dilatation sur une droite d'équation ax' + by' = 0 et de rapport k.

Exercice 6.

Soit $r_{\left(0;\frac{\pi}{2}\right)}$ (ou r plus simplement) la rotation de centre O et d'angle $\frac{\pi}{2}$, et soit R sa matrice associée.

Soit $h_{(0;4)}$ (ou h plus simplement) l'homothétie de centre O et de rapport 4, et soit H sa matrice associée.

A tout point M du plan on associe les points M' et M'' images respectives de M par $r \circ h$ et $h \circ r$. Calculer les coordonnées de M' et M''.

Que conjecturez-vous ? Démontrer la conjecture par un calcul matriciel faisant intervenir uniquement les matrices R et H.

Remarque: l'application linéaire $r \circ h$ est appelée similitude de centre O, d'angle $\frac{\pi}{2}$, et de rapport 4.

Exercice 7.

- 1. Soient *A* et *B* deux matrices carrées inversibles de même ordre. Montrer que *AB* est inversible en exprimant son inverse.
- 2. Soit M une matrice carrée telle que $M^3 + 2M^2 = I$. Montrer que M est inversible et calculer son inverse en fonction de M.
- 3. Même question que le 2. avec $M^3 3M^2 + 2M = I$.

Exercice 8.

1. Soient $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 3 & 1 \\ 2 & -5 \end{pmatrix}$. Résoudre l'équation AX = B.

2. Soient $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ et $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Résoudre l'équation XA + B = C.

Exercice 9.

Un exercice préparatoire pour l'étude des suites de matrices. On donne une matrice diagonale $D = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$. Calculer D^n pour $n \in \mathbb{N}^*$.

Exercice 10.

Soit
$$A = \begin{pmatrix} 3 & 1 \\ -2 & 0 \end{pmatrix}$$

1. Calculer A^2 et A^3 .

Soit
$$P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$

2.

a/ Montrer que P est inversible et calculer P^{-1} .

b/ Démontrer que la matrice $D = P^{-1}AP$ est une matrice diagonale.

c/ Démontrer que $A = PDP^{-1}$.

3. Démontrer par récurrence que $\forall n \in \mathbb{N}$ $A^n = PD^nP^{-1}$.

4. En déduire l'expression de A^n pour $n \in \mathbb{N}$, et vérifier qu'elle est cohérente avec les résultats du 1.

Exercice 11.

Soient $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et la suite de matrices colonnes $(U_n)_{n \in \mathbb{N}}$ définie par la relation

$$U_{n+1} = AU_n + B \text{ et } U_0 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

1. Déterminer la matrice C telle que C = AC + B.

2.

a/ Soit $F = \frac{1}{2}A$. Déterminer la matrice N telle que $F = I_2 + N$.

b/ Calculer N^2 , puis F^2 et F^3 en fonction de I_2 et N.

c/ En déduire F^n puis A^n en fonction de n.

3. La suite $(U_n)_{n\in\mathbb{N}}$ est-elle convergente?